Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 24, 2026
-
Free, publicly-accessible full text available March 1, 2026
-
One of the challenges facing AI governance is the need for multiple scales. Universal human rights require a global scale. If someone asks AI if education is harmful to women, the answer should be “no” regardless of their location. But economic democratization requires local control: if AI’s power over an economy is dictated by corporate giants or authoritarian states, it may degrade democracy’s social and environmental foundations. AI democratization, in other words, needs to operate across multiple scales. Nature allows the multiscale flourishing of biological systems through fractal distributions. In this paper, we show that key elements of the fractal scaling found in nature can be applied to the AI democratization process. We begin by looking at fractal trees in nature and applying similar analytics to tree representations of online conversations. We first examine this application in the context of OpenAI’s “Democratic Inputs” projects for globally acceptable policies. We then look at the advantages of independent AI ownership at local micro-levels, reporting on initial outcomes for experiments with AI and related technologies in community-based systems. Finally, we offer a synthesis of the two, micro and macro, in a multifractal model. Just as nature allows multifractal systems to maximize biodiverse flourishing, we propose a combination of community-owned AI at the micro-level, and globally democratized AI policies at the macro-level, for a more egalitarian and sustainable future.more » « less
-
An understanding of human brain individuality requires the integration of data on brain organization across people and brain regions, molecular and systems scales, as well as healthy and clinical states. Here, we help advance this understanding by leveraging methods from computational genomics to integrate large-scale genomic, transcriptomic, neuroimaging, and electronic-health record data sets. We estimated genetically regulated gene expression (gr-expression) of 18,647 genes, across 10 cortical and subcortical regions of 45,549 people from the UK Biobank. First, we showed that patterns of estimated gr-expression reflect known genetic–ancestry relationships, regional identities, as well as inter-regional correlation structure of directly assayed gene expression. Second, we performed transcriptome-wide association studies (TWAS) to discover 1,065 associations between individual variation in gr-expression and gray-matter volumes across people and brain regions. We benchmarked these associations against results from genome-wide association studies (GWAS) of the same sample and found hundreds of novel associations relative to these GWAS. Third, we integrated our results with clinical associations of gr-expression from the Vanderbilt Biobank. This integration allowed us to link genes, via gr-expression, to neuroimaging and clinical phenotypes. Fourth, we identified associations of polygenic gr-expression with structural and functional MRI phenotypes in the Human Connectome Project (HCP), a small neuroimaging-genomic data set with high-quality functional imaging data. Finally, we showed that estimates of gr-expression and magnitudes of TWAS were generally replicable and that thep-values of TWAS were replicable in large samples. Collectively, our results provide a powerful new resource for integrating gr-expression with population genetics of brain organization and disease.more » « less
-
Išgum, Ivana; Colliot, Olivier (Ed.)
-
Predicting Crohn’s disease severity in the colon using mixed cell nucleus density from pseudo labelsTomaszewski, John E.; Ward, Aaron D. (Ed.)
An official website of the United States government

Full Text Available